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Abstract 

The anion [Si(O,C,H,-1,2),{C,H,(CH,NMe,),-2,6)]- is hexacoor- 
dinate rather than heptacoordinate. Only one NMe, group is coordi- 
nated. The other NMe, group can abstract a proton from methanol 
to give a compound, the X-ray crystal structure of which reveals a 
strong hydrogen-bonding interaction between the NHMe, and a 
catecholate oxygen atom. This interaction prevents exchange be- 
tween the two NMe, groups. 

It has been found that anionic pentacoordinate sili- 
con species react readily with nucleophilic reagents 
[1,2], in some cases faster than the corresponding tetra- 
coordinate ones [2]. Moreover, a structural study of 
compounds 1 [3] and 2 [4] bearing electron-withdraw- 
ing ligands, and in which hexacoordination may be 
achieved by an intramolecular dative Si-N bond, has 
shown that both anions adopt quasi-octahedral geome- 
try. These results suggest that reactions between penta- 
coordinate silicon compounds and nucleophilic reagents 
proceed via hexacoordinate intermediates or transition 
states. 

(PPN) + 

(I) 
PPN+= Ph,P=&=PPh, 
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(2) 
The reactivity of some dianionic hexacoordinate sili- 

con species has also been investigated [5]. These species 
also react readily with nucleophilic reagents, but the 
mechanism of such reactions has not yet been eluci- 
dated. A mechanism involving a heptacoordinate sili- 
con intermediate (or transition state) 161 is possible, 
since at the moment there is no argument to rule out 
such a process 171. In this context, it was of interest to 
prepare a hexacoordinate silicon species in which hep- 
tacoordination might be achieved by intramolecular 
coordination. Since the hexacoordination of 1 has been 
demonstrated [31, we decided to prepare the silicate 3 
which contains the 2,6-bis[(dimethylaminohnethyl]- 
phenyl group, previously used by van Koten et al. to 
stabilize triorganotin cations [8]. 
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Fig. 1. ORTEP view of 4. Hydrogen atoms are omitted for clarity. 
Selected bond lengths (A) and angles (“): Si-o(l) 1.768(3), Si-G(2) 
1.778(3), Si-o(3) 1.771(3), Si-o(4) 1.796(3), Si-C(21) 1.943(4), Si- 
N(1) 2.085(4), Si . . . N(2) 3.521(4), N(2)-H+ 1.16(10), 0(4)-H+ 
1.6200); G(2)-a-N(l) 174.6(2), G(S)-Si-ci21) 168.8(2), o(2)-Si- 
O(1) 90.0(l), o(2)-Si-G(4) 90.2(l), Me(3)-N(2)-H+ 109.5. 
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Fig. 2. 250 MHz +-H NMR spectrum of 4 in CD2C[ 2 at -40°C. 
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The purpose of the present communication is to 
report the unexpected reactivity of 3 towards protic 
compounds. 

Surprisingly, it was not possible to synthesize 3 by 
the route previously used for the preparation of 1 [3]. 
Under these conditions, the zwitterion 4 was obtained 
[9*] instead of the potassium salt 3 (Scheme 1). 

The molecular structure of 4 was determined by 
X-ray crystal structure analysis, which revealed an 
overall octahedral geometry (Fig. 1) [10" ] with an Si-N 
bond (2.085 ~,) shorter than that observed in the com- 
pound 1 [3] (2.15 ~). The proton which imposes electri- 
cal neutrality is bonded to the other nitrogen atom and 
is also involved in a hydrogen-bonding interaction with 
0(4). 

The  1H NMR spectrum of 4 at -40°C, shown in 
Fig. 2, exhibits interesting features. The resonances of 

* Reference number with asterisk indicates a note in the list of 
references. 

the two NMe 2 groups are totally distinct. That arising 
from the NMe 2 group coordinated to the silicon atom 
is resolved into two singlets. The second N M e  2 group 
is a protonated group and gives rise to two distinct 
doublets. These two doublets indicate not only that the 
hydrogen-bonding interaction with 0(4) is maintained 
in solution, but that there is no hydrogen-exchange 
between the two NMe 2 groups. The diastereotopy ob- 
served for the two N M e  2 groups also results from the 
hydrogen-bonding with 0(4). This interaction hinders 
an intramolecular non-dissociative isomerization pro- 
cess. In contrast, it was shown for compound 1 that this 
process requires a very low activation energy [3]. 

Abstraction of the proton from 4 is difficult: 4 does 
not react with potassium methoxide or sodium hydride, 
but it is quantitatively converted into 3 when treated 
with potassium hydride [11"] (Scheme 1). The protona- 
tion of 3 to give 4 occurs very rapidly in methanol. The 
1H NMR spectrum of the PPN salt $ [12"] shows the 
two N M e  2 groups to be equivalent at room tempera- 
ture (the methyl resonance appears as a sharp singlet). 
Furthermore, since the 29Si Chemical shift of 5 (8-- 
- 127.2 ppm, in the solid state) is very close to that of 4 
(8 = -134.9 ppm, in the solid state), it is concluded 
that 5 is also hexacoordinate. The equivalence of the 
twO N M e  2 groups apparently results from rapid ex- 
change (on the NMR time scale) of one NMe 2 group 
for the other in the hexacoordinate silicon complex. 
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Scheme 1. 
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This can be interpreted as a nucleophilic attack on a 
hexacoordinate silicon species. 

Further studies on 5 are in progress. 
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aminomethyl)phenyltrimethoxysilane (2.7 g, 8.65 mmol) in 
methanol (10 ml). The reaction mixture was stirred for 3 h and 
then the solvent was removed under vacuum. The resulting white 

powder was washed twice with ether and dried under vacuum (0.1 
mmHg) by heating (140°C) for 1 h. The crude product was 
purified by two recrystfiations from acetone/CH,Cl, (50/50), 
to give 1.5 g of compound 4; m.p. 219-221°C. ‘H NMR (CD&, 
-40°C): 6 2.13 (s, 3H); 2.63 (d, 3H, J = 4.7 Hz); 2.82 (s, 3H); 3.02 
(d, 3H, J= 4.8 Hz); 3.33 (d, lH, J- 13.8 Hz); 3.4 (dd, 1H, 
J= 10.2 Hz, I = 2.8 Hz); 4.6 (d, lH, J = 14 Hz); 4.95 (d, lH, 
J= 12 HZ); 6.38-6.7 (m, 8H); 6.9-7.15 (m, 3H). *‘Si NMR 
(CD,Cl,): 6 - 134.9 ppm (in the solid state). Negative-ion FAB 
MS m/r 435 (M-H)-; positive-ion FAB MS m/r 437 (M+ 
H)+. IR v(NI-I)= 3422 cm-‘. Anal. Found: C, 65.93; H, 6.52; N, 
6.42. C,H,N,O,Si: C, 66.05; H, 6.42; N, 6.42%. 

10 Crystal structure analvsis of 4: P2, /c. a 12.73802). b 18.150(3). 
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c i1.%2(2) % /3 106:66(4)“, V 2849.j A’, Z = 4, .i = 0.059 i;o; 
2173 independent reflections with F > 2.8o(F) (En&-No&s 
CAD-4 diffractometer, MO Ka). A list of atomic coordinates and 
all crystal data may be obtained from the Cambridge Crystallo- 
graphic Data Centre, 12 Union Road, Cambridge CB2 lEZ, UK 
To a solution of compound 4 (1.5 g, 3.44 mmol) in CH2c12 (45 
ml) was added a suspension of KH (3.44 mmol) in CH2C12 (10 
ml). The mixture was stirred at room temperature for 5 h and 
then a grey solid was filtered (1.5 g, 98%) and identified as 
compound 3 from ?ji NMR: S -129.8 ppm (solid state) and 
mass spectrum. Negative-ion FAB MS m/z 435 (M-K)-, 909 
(2M-K)-. 

12 A solution of [PPNjCl (0.87 g, 1.52 mmol) in 20 ml of CH,Cl, 
was added dropwise to a suspension of 4 (0.8 g, 1.68 mmol) in 
CH,Cl, (50 ml) at 0°C under nitrogen. The mixture was stirred 
for 15 min, then filtered under nitrogen to remove KCl. The 
solution was concentrated under vacuum; the residue was washed 
twice with ether to give 1.3 g (84%) of white powder which was 
crystallized from CH,Cl, /Et20 (95/5) to afford 0.81 g (55%) of 
5; m.p. 171-72°C. ‘H NMR (CD2C12): 6 2.4 (s, 12H, NMe,); 3.76 
(s, 4H, CH,N); 6.32-6.48 (m, 8H); 7-7.08 (m, 3H); 7.4-7.68 (m, 
30H). *‘Si NMR: S - 127.2 ppm (in the solid state). Negative-ion 
FAB MS m/z 435 (M - PPN)-; positive-ion FAB MS m/z 538 
(PPN) +. 


